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CHAPTER 1

Oscillatory Motion

The study of vibration i1s concerned with the oscillatory motions of bodies and the
forces associated with them. All bodies possessing mass and elasticity are capable of
vibration. Thus, most engineering machines and structures experience vibration to some
degree, and their design generally requires consideration of their oscillatory behavior.

Oscillatory systems can be broadly characterized as linear or nonlinear. For linear
systems, the principle of superposition holds, and the mathematical techniques avail-
able for their treatment are well developed. In contrast, techniques for the analysis of
nonlinear systems are less well known, and difficult to apply. However, some knowl-
edge of nonlinear systems is desirable, because all systems tend to become nonlinear
with increasing amplitude of oscillation.

There are two general classes of vibrations—free and {orced. Free vibration takes
place when a system oscillates under the action of forces inherent in the system itself,
and when external impressed forces are absent. The system under free vibration will
vibrate at one or more of its natural frequencies, which are properties of the dynamical
system established by its mass and stiffness distribution. ‘

Vibration that takes place under the excitation of external forces is called forced
vibration. When the excitation is oscillatory, the system is forced to vibrate at the exci-
tation frequency. If the frequency of excitation coincides with one of the natural fre-
quencies of the system, a condition of resonance is encountered, and dangerously large
oscillations may result. The failure of major structures such as bridges, buildings, or air-
plane wings is an awesome possibility under resonance. Thus, the calculation of the
natural frequencies is of major importance in the study of vibrations.

Vibrating systems are all subject to damping to some degree because energy is
dissipated by friction and other resistances. If the damping is small, it has very little
influence on the natural {requencies of the system, and hence the calculations for the
natural frequencies are generally made on the basis of no damping. On the other hand,
damping is of great importance in limiting the amplitude of oscillation at resonance.

The number of independent coordinates required to describe the motion of a sys-
tem 1s called degrees of freedom of the system. Thus, a free particle undergoing general
motion in space will have three degrees of freedom, and a rigid body will have six
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FIGURE 1.1.1. Recording harmonic motion.

degrees of freedom, i.e., three components of position and three angles defining its ori-
entation. Furthermore, a continuous elastic body will require an infinite number of
coordinates (three for each point on the body) to describe its motion; hence, its
degrees of freedom must be infinite. However, in many cases, parts of such bodies may
be assumed to be rigid, and the system may be considered to be dynamically equiva-
lent to one having finite degrees of freedom. In fact, a surprisingly large number of
vibration problems can be treated with sufficient accuracy by reducing the system to
one having a few degrees of freedom.

HARMONIC MOTION

Oscillatory motion may repeat itself regularly, as in the balance wheel of a watch, or
display considerable irregularity, as in earthquakes. When the motion is repeated in
equal intervals of time 7, it is called periodic motion. The repetition time 7is called the
period of the oscillation, and its reciprocal, /= 1/7, is called the frequency. If the
motion is designated by the time function x(¢), then any periodic motion must satisfy
the relationship x(f) = x{t + 7).

The simplest form of periodic motion is harmonic motion. It can be demon-
strated by a mass suspended from a light spring, as shown in Fig. 1.1.1. If the mass is
displaced from its rest position and released, it will oscillate up and down. By placing a
light source on the oscillating mass, its motion can be recorded on a light-sensitive film-
strip, which is made to move past it at a constant speed.

The motion recorded on the filmstrip can be expressed by the equation

!
x = Asin27- (1.1.1)
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FIGURE 1.1.2. Harmonic moticn a% a projection of a point moving on a circle.



Section 1.1 Harmonic Motion 7

where A is the amplitude of oscillation, measured from the equilibrium position of the
mass, and 7is the period. The motion is repeated when ¢ = 7.

Harmonic motion is often represented as the projection on a straight line of a
point that is moving on a circle at constant speed, as shown in Fig. 1.1.2. With the angu-
lar speed of the line 0—p designated by w, the displacement x can be written as

x = Asin wt (1.1.2)

The quantity w is generally measured in radians per second, and is referred to as
the circular frequency.! Because the motion repeats itself in 27 radians, we have the
relationship

2
w="" =2nf (1.1.3)
T

where Tand fare the period and frequency of the harmonic motion, usually measured
in seconds and cycles per second, respectively.

The velocity and acceleration of harmonic motion can be simply determined by
differentiation of Eq. (1.1.2). Using the dot notation for the derivative, we obtain

X = wA cos ot = wA sin (wt + 7/2) (1.1.4)
x = —w Asin wt = o* A sin (wf + ) (1.1.5)

Thus, the velocity and acceleration are also harmonic with the same frequency of oscil-
lation, but lead the displacement by 7r/2 and 7r radians, respectively. Figure 1.1.3 shows
both time variation and the vector phase relationship between the displacement, veloc-
ity, and acceleration in harmonic motion.

Examination of Egs. (1.1.2) and (1.1.5) reveals that

X = —w'x (1.1.6)
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FIGURE 1.1.3. In harmonic motion, the velocity and acceleration lead the displacement by
/2 and .

"The word circular is generally deleted, and w and f are used without distinction for {requency.



8 Chapter1 Oscillatory Motion

so that in harmonic motion, the acceleration is proportional to the displacement and is
directed toward the origin. Because Newton’s second law of motion states that the
acceleration is proportional to the force, harmonic motion can be expected for systems
with linear springs with force varying as kx.

Exponential form. The trigonometric functions of sine and cosine are related to
the exponential function by Euler’s equation

e' = cos 0 + isin 6 (1.1.7)

A vector of amplitude A rotating at constant angular speed o can be represented as a
complex quantity z in the Argand diagram, as shown in Fig. 1.1.4.

7= Aelwt
= A cos wt + IA sin wt (1.1.8)
=x + iy

The quantity z is referred to as the complex sinusoid, with x and y as the real and imag-
inary components, respectively. The quantity z = Ae™* also satisfies the differential
equation (1.1.6) for harmonic motion.

Figure 1.1.5 shows z and its conjugate z* = Ae™" which is rotating in the nega-
tive direction with angular speed —w. It is evident from this diagram that the real com-
ponent x is expressible in terms of z and z* by the equation

x =3(z + z%) = A cos wf = Re Ae™ (1.1.9)

where Re stands for the real part of the quantity z. We will find that the exponential
form of the harmonic motion often offers mathematical advantages over the trigono-
metric form.

Some of the rules of exponential operations between z, = A, e
are as [ollows:

“rand z, = A"

Multiplication 7,2, = A A, e'lBt )
o b4 A B
Division == (—' ) A (1.1.10)
23 A,
¥ ¥
7 = Ae 1wl Z
A A ~.
wf w/ e
X _UJ’ A,// X
<7 Z;
FIGURE 1.1.4. Haimonic motion FIGURE 1.1.5. Vector 7 and its conjugate 7 .

represented by a rotating vector.
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PERIODIC MOTION

It is quite common for vibrations of several different frequencies to exist simultane-
ously. For example, the vibration of a violin string is composed of the fundamental fre-
quency f and all its harmonics, 2f, 3f, and so forth. Another example is the free
vibration of a multidegree-of-freedom system, to which the vibrations at each natural
frequency contribute. Such vibrations result in a complex waveform, which 1s repeated
periodically as shown in Fig. 1.2.1.

The French mathematician J. Fourier (1768-1830) showed that any periodic
motion can be represented by a series of sines and cosines that are harmonically related.
If x(¢) is a periodic function of the period 7, it is represented by the Fourier series

a

0
)= 2 + t + t+ -
x (1) 5 T+ cos wyl + a, cos w, 120)

+ b, sinwit + b,sin ot + -

where
. 207
(Ul .
-
w, = nw,

To determine the coefficients ¢ _and b , we multiply both sides of Eq. (1.2.1) by cos w { or
sin w f and integrate each term over the period 7. By recognizing the following relations,

/2 .
, e 0 im#n

COS w, f COS w = ,
—a2 " " /2 iftm=n

7/2 .
0 ifm#n

1.2.2
/2 ifm=n ( )

sin @, ! sin w, [ dt = {
—T1/2

-~ - - =T

FIGURE 1.2.1. Periodic motion of period 7.
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2 .
! : 0 ifm+#n
COS w, ! SIn w,,t df = , B
—a2 0 itm=n

all terms except one on the right side of the equation will be zero, and we obtain the

result
5 /2
a, = — x(t) cos w,f dt
TJ-12
9 T/2
b,= - f x(t) sin e, t dt (1.2.3)
TJ w2

The Fourier series can also be represented in terms of the exponential function.
Substituting

— 1wt —1w,t
cos w,t = (e + e7')

sin wnt = _%l'(etw,,f _ e“‘[w"f)
in Eq. (1.2.1), we obtain
X(f) = % + 2 [%([ln - l‘b”)el(u“! + %(aﬂ + l'b”)e—tm”f]
n=1
= %Q + E [C”elw,,t + C:;v.eﬂw”r] (12'4)
n=\

s
— it
- 2 Ch€

= —x

where

Cp = 24y

(a, — ib,)

Substituting for a, and b, from Eq. (1.2.3), we find ¢, to be

(12.5)

PO— D

Cn =

1 7/2
c, = — J x(t)(cos w,t — isin w, 1) dt
TJ-2

1 /2 )
! f (o)t dt (1.2.6)

T —7/2

ll

Some computational effort can be minimized when the function x(¢) is recogniz-
able in terms of the even and odd functions:

x(t) = E(t) + 0(r) (1.2.7)
An even function E({) is symmetric about the origin, so that E(1) = E(—1), ie,
cos wt = cos (—wt). An odd function satisfies the relationship O(f) = —O(—1¢), i.e,

sin wt = —sin(—wt). The following integrals are then helpful:
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FIGURE 1.2.2. Fourier spectrum for pulses shown in Prob. 1.16,k = .

/2
f E(1) sin w,t dt = 0 (1.2.8)

—-7/2

7/2
f O(t) cos w,tdt = 0
—7/2

When the coefficients of the Fourier series are plotted against frequency w , the
result is a series of discrete lines called the Fourier spectrum. Generally plotted are the
absolute values |2¢,| = Va? + b2 and the phase ¢, = tan '(b,/a,}, an example of
which is shown in Fig. 1.2.2. Fourier analysis including the Fourier transform are dis-
cussed in more detail in Chapter 13, )

With the aid of the digital computer, harmonic analysis today is efficiently car-
ried out. A computer algorithm known as the fast Fourier transform?® (FFT) is com-
monly used to minimize the computation time.

1.3 VIBRATION TERMINOLOGY

Certain terminologies used in vibration analysis need to be represented here. The sim-
plest of these are the peak value and the average value.

The peak value generally indicates the maximum stress that the vibrating part is
undergoing. It also places a limitation on the “rattle space” requirement.

The average value indicates a steady or static value, somewhat like the dc level of
an electrical current. It can be found by the time integral

L (7
X = lim —J x(t) dt (1.3.1)
Ty

[ —m

“See J. S. Bendat and A. G. Piersol, Random Data (New York: John Wiley, 1971), pp. 305-306.
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For example, the average value for a complete cycle of a sine wave, A sin ¢, is zero;
whereas its average value for a half-cycle is

o T

X = éf sin £ dr = %é = 0.637A
0

Itis evident that this is also the average value of the rectified sine wave shown in Fig. 1.3.1.
The square of the displacement generally is associated with the energy of the
vibration for which the mean square value is a measure. The mean square value of a
time function x(¢) is found from the average of the squared values, integrated over some
time interval T:
T

— 1
x? = lim — f x*(t) dt (1.3.2)
=21 )y

—> L

For example, if x(t) = A sin o, its mean square value is

- A j "1 1,
xf = Jim T2 (1 — cos 2et) di ZA
The root mean square (rms) value is the square root of the mean square value.
From_the previous example, the rms of the sine wave of amplitude A is
A/V2 = 0.707A. Vibrations are commonly measured by rms meters.
The decibel is a unit of measurement that is frequently used in vibration mea-
surements. It is defined in terms of a power ratio.

dB = 10 logm(pf])
7
P2 (13.3)

2
= 10 1ogm(ﬂ )

X2

The second equation results from the fact that power is proportional to the square of
the amplitude or voltage. The decibel is often expressed in terms of the first power of
amplitude or voltage as

dB = 20 1ogm( ﬂ) (1.3.4)
X2
Thus an amplifier with a voltage gain of 5 has a decibel gain of

20log,,(5) = + 14

x{t)

FIGURE 1.3.1. Average
value of a 1ectified sinc wave.




Problems 13

Because the decibel is a logarithmic unit, it compresses or expands the scale.

When the upper limit of a frequency range is twice its lower limit, the frequency
span is said to be an octave. For example, each of the frequency bands in the following
table represents an octave band.

Band Frequency Range (Hz) Frequency Bandwidth
1 10-20 10
2 20-40 20
3 40-80 40
4 200-400 200

PROBLEMS

1.1. A harmonic motion has an amplitude of 0.20 cm and a period of 0.15 s. Determine the
maximum velocity and acceleration.

1.2. An accelerometer indicates that a structure is vibrating harmonically at 82 cps with a
maximum acceleration of 50 g. Determine the amplitude of vibration.

1.3. A harmonic motion has a frequency of 10 cps and its maximum vclocity is 4.57 m/s.
Determine its amplitude, its period, and its maximum acceleration.

1.4. Find the sum of two harmonic motions of equal amplitude but of slightly different fre-
quencies. Discuss the beating phenomena that result from this sum.

1.5. Express the complex vector 4 -+ 3/ in the exponential form Ae',
1.6. Add two complex vectors (2 + 37) and (4 — i), expressing the result as A2 6.
1.7. Show that the multiplication of a vector z = A¢' by i rotates it by 90°.

1.8. Determine the sum of two vectors 5¢'™% and 4¢'™/? and find the angle between the resul-
tant and the [irst vector.

1.9. Determine the Fourier series for the 1ectangular wave shown in Fig. P1.9.

FIGURE P1.9.

1.10. If the origin of the square wave of Prob. 1.9 is shifted to the right by #/2, determine the
Fourier series.

1.11. Determine the Fourier series for the triangular wave shown in Fig. P1.11.
x(t)

SN INN N
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FIGURE P1.11.
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1L.12. Determine the Fourier series for the sawtooth curve shown in Fig. P1.12. Express the
result of Prob. 1,12 in the exponential form of Eq. (1.2.4).

x(H)

-2 0 2m a1 61 wy !

FIGURE P1.12.

1.13. Determine the rms value of a wave consisting of the positive portions of a sine wave.

L.14. Determine the mean square value of the sawtooth wave of Prob. 1.12. Do this two ways,
from the squared curve and from the Fourier series.

1.15. Plot the frequency spectrum for the triangular wave of Prob. 1.11.
1.16. Determine the Fourier serles of a series of rectangular pulses shown in Fig. P1.16. Plot ¢,

and ¢, versus n when k = 3
) H H H

«—2#—»‘ -F{k-n—’« ‘*)1

FIGURE P1.16.

1.17. Write the equation for the displacement s of the piston in the crank-piston mechanism
shown in Fig. P1.17, and determine the harmonic components and their relative magni-
tudes. If v/l = 1, what is the ratio of the second harmonic compared to the first?

FIGURE P1.17. s~

1.18. Determine the mean square of the rectangular pulse shown in Fig. P1.18 for £ = 0.10. If
the amplitude is A, what would an rms voltmeter read?

l
|
|
i

k]

FIGURE P1.18. L‘_T—+

1.19. Determine the mean square value of the triangular wave of Fig. P1.11.

1.20. An rms voltmeter specifies an accuracy of £0.5 dB. If a vibration of 2.5 mm rms is mea-
sured, determine the millimeter accuracy as read by the voltmeter.



1.21.

1.22.

1.23.

1.24.

L.25.

Problems 15

Amplification factors on a voltmeter used to measure the vibration output from an
accelerometer are given as 10, 50, and 100. What are the decibel steps?

The calibration curve of a piezoelectric accelerometer is shown in Fig. P1.22 where the
ordinate is in decibels. If the peak is 32 dB, what is the ratio of the resonance response to

that at some low frequency, say, 1000 cps?

30 I"\
=0 -
-§ 0 // \\
O )
Q \\
—10 \
—20 \
100 1000 10000 00000
£ FIGURE P1.22.

Using coordinate paper similar to that of Appendix A, outline the bounds for the follow-
ing vibration specifications. Max. acceleration = 2 g, max. displacement = 0.08 in., min.
and max. frequencies: 1 Hz and 200 Hz.

Assume a pulse occurs at integer times and lasts for 1 second. It has a random amplitude
with the probability of having the amplitude equal 1 or —1 being p(1) = p(—1) = 1/2.
What is the mean value and the mean square value of the amplitude?

Show that every function f{r) can be represented as a sum of an odd function O(f) and an
even function E(¥).



